Powered by Blogger.

Lesson Archive

আরেকটু বিস্তারিত - সেট সম্পর্কে ...

 

সাধারণ ধারণা :

  • সেট হচ্ছে সুনির্দিষ্টভাবে সংজ্ঞায়িত বস্তুসমূহের সমাহার বা তালিকা । সেটের অন্তর্গত প্রত্যেক বস্তুকে ঐ সেটে উপাদান (element) বা সদস্য (member) বলা হয় ।
  • সাধারণত সেট দুই পদ্ধতিতে প্রকাশ করা হয় :
  1. তালিকা পদ্ধতি (Tabular Method) : যেমন A = {1,2,3,4,5}
  2. সেট গঠন পদ্ধতি (Set Builder Method) : যেমন B = {x ∣ x ∈  N এবং x ≤ 5}
  • সমান সেট : যেকোন সেট A=B হবে যদি A সেটের সকল সদস্য B সেটের সদস্য হয় এবং B সেটের সকল সদস্য A সেটের সদস্য হয় । অর্থাৎ,
A=B হবে যদি এবং কেবল যদি হলে x ∈  B হয় এবং x ∈  B হলে x ∈ A হয় ।
  • ফাঁকা সেট/ শূণ্য সেট : যে সেটের কোন সদস্য নেই তাকে ফাঁকা বা শূণ্য (Empty) সেট বলা হয় । শূণ্য সেটকে {}  সংকেত দ্বারা প্রকাশ করা হয় ।
  • উপসেট : যদি A সেটের প্রতিটি উপাদান B সেটেরও উপাদান হয় তবে A কে সেটের B উপসেট (Subset) বলা হয় । এবং A ⊂ B লিখে তা প্রকাশ করা হয় । উপসেট বোঝাতে ⊆ চিহ্নও ব্যবহার করা হয় । A ⊆ B হয় যদি ও কেবল যদি x ∈ A হলে x ∈ B হয় । কোন সেটের সদস্য সংখ্যা n হলে ঐ সেটের জন্য 2n সংখ্যক উপসেট পাওয়া যাবে ।
  • প্রকৃত উপসেট : সেট A কে B এর প্রকৃত উপসেট (Proper Subset) বলা হয় যদি A ⊂ B এবং A ≠ B হয় । A, B এর প্রকৃত উপসেট বোঝাতে A ⊊ B লেখা হয় । কোন সেটের সদস্য সংখ্যা n হলে ঐ সেটের জন্য (2n-1) সংখ্যক প্রকৃত উপসেট পাওয়া যাবে ।
  • শক্তি সেট : কোন সেটের উপসেটসমূহের সেটকে ঐ সেটের শক্তি সেট (Power set) বলে । কোন সেট A এর পাওয়ার সেটকে P(A) দ্বারা প্রকাশ করা হয় ।
  • সার্বিক সেট : আলোচনাধীন সকল সেটকে তথা তাদের উপাদানসমূহকে একটি বিশেষ সেটের অন্তর্ভূক্ত বিবেচনা করা হয় । সেই বিশেষ সেটকে ঐ আলোচনার সার্বিক সেট (Universal Set) বলা হয় এবং সাধারণত ⋃ প্রতীকের সাহায্যে প্রকাশ করা হয় ।
  • ব্যবধি : a ও b বাস্তব সংখ্যা এবং a<b হলে এর চারটি বিশেষ ধরনের উপসেটকে a ও b প্রান্তবিশিষ্ট ব্যবধি (Interval) বলা হয় । দ্রষ্টব্য, সকল বাস্তব সংখ্যার সেটকে R দ্বারা সূচিত করা হয় ।
  1. a থেকে b পর্যন্ত খোলা (Open) ব্যবধি : ]a,b[ = (a,b) = {x∣x ∈ R এবং a<x<b}
  2. a থেকে b পর্যন্ত বদ্ধ (Closed) ব্যবধি : [a,b] = {x∣x ∈ R এবং a≤x≤b}
  3. a থেকে b পর্যন্ত খোলা-বদ্ধ ব্যবধি : ]a,b] = (a,b] = {x∣x ∈ R এবং a<x≤b}
  4. a থেকে b পর্যন্ত বদ্ধ-খোলা ব্যবধি : [a,b[ = [a,b) = {x∣x ∈ R এবং a≤x<b}
  • সংযোগ সেট : দুটি সেট A এবং B এর সকল উপাদান নিয়ে (কোন উপাদানের পুনরাবৃত্তি না করে) গঠিত সেটকে A এবং B এর সংযোগ সেট বলা হয় । যা A⋃B প্রতীকের মাধ্যমে প্রকাশ করা হয় । অর্থাৎ,
A⋃B = {x ∣ x ∈ অথবা  x ∈ b}
দ্রষ্টব্য, x ∉ A⋃B হয় যদি ও কেবল যদি x ∉ A এবং X ∉ B হয় ।
সংজ্ঞা থেকে এটা স্পষ্ট যে, i. A⋃B = B⋃A [বিনিময় বিধি]
                                      ii. A ⊆ A⋃B এবং B ⊆ A⋃B                         
  • ছেদ সেট : দুটি সেট A এবং B এর সকল সাধারণ (Common) উপাদান নিয়ে গঠিত সেটকে A এবং B এর ছেদ সেট বলা হয় । যা A⋂B লিখে প্রকাশ করা হয় । অর্থাৎ
A⋂B = {x ∣ x ∈ A এবং x ∈ B}
দ্রষ্টব্য, x ∉ A⋂B হয় যদি ও কেবল যদি x ∉ A অথবা x ∉ B
সংজ্ঞা থেকে এটা স্পষ্ট যে, i. AB = BA [বিনিময় বিধি]
  ii. A⋂B ⊂ A এবং A⋂B ⊂ B
  • নিশ্ছেদ সেট : দুটি সেট A এবং B নিশ্ছেদ সেট বা সংক্ষেপে নিশ্ছেদ বলা হয় যদি A এবং B এর মধ্যে কোন সাধারণ উপাদান বিদ্যমান না থাকে । অর্থাৎ, A⋂B = ϕ যদি হয় ।
  • অন্তর সেট : A এবং B দুটি সেট হলে, যে সমস্ত উপাদান A সেটে আছে কিন্তু B সেটে নেই, এরূপ উপাদান নিয়ে গঠিত সেটকে A এবং B এর অন্তর সেট (Differecne Set) বলে । A এবং B এর অন্তর সেটকে A-B বা A\B নিয়ে প্রকাশ করা হয় । একইভাবে, B সেটে আছে কিন্তু A সেটে নেই এরূপ উপাদান নিয়ে গঠিত সেটকে B এবং A এর অন্তর সেট বলে । B এবং A এর অন্তর সেটকে B-A বা B\A লিখে প্রকাশ করা হয় ।
A-B = A\B = {X ∣ X ∈ A এবং X ∉ B}
B-A = B\A = {X ∣ X ∈ B এবং X ∉ A}
দ্রষ্টব্য : i. A-B ⊂ A
            ii. B-A ⊂ B
  • পূরক সেট : কোন সেটের উপাদানগুলোকে বাদ দিয়ে সার্বিক সেটের অন্যান্য সমস্ত উপাদান নিয়ে গঠিত সেটকে উক্ত সেটের পূরক সেট বলে । A কোন সেট হলে A এর পূরক (Complement) সেটকে A′ প্রতীক দ্বারা প্রকাশ করা হয় । অর্থাৎ,
A′ = U-A = {X ∣ X ∈ U এবং X ∉ A}
  • ক্রমজোড় : দুটি সংখ্যার ক্রমজোড়ে (Ordered Pair) একটি সংখ্যাকে প্রথম এবং অপরটিকে দ্বিতীয় উপাদান ধরা হয় । (a,b) দ্বারা একটি ক্রমজোড় নির্দেশ করা হয় যার প্রথম পদ a এবং দ্বিতীয় পদ b । ক্রমজোড় (a,b) ও (c,d) সমান হয় অর্থাৎ, (a,b) = (c,d) হয় যদি ও কেবল যদি a=c এবং b=d হয় ।
  • কার্তেসীয় গুণজ সেট : যদি A এবং B দুটি সেট হয়, তবে A এর উপাদানগুলোকে প্রথম পদ ও B এর উপাদানগুলোকে দ্বিতীয় পদ ধরে গঠিত ক্রমজোড়ের সেটকে A এবং B এর কার্তেসীয় গুণজ (Cartesian Product) সেট বলে । যা A×B প্রতীক দ্বারা প্রকাশ করা হয় । অর্থাৎ,
A×B = {(x,y) ∣ x ∈ A এবং y ∈ B}
A×B = {(x,y) ∣ x ∈ B এবং y ∈ A}
এবং সাধারণভাবে, A×B ≠ B×A
দ্রষ্টব্য, A সেটে p সংখ্যক বস্তু এবং B সেটে q সংখ্যক বস্তু থাকলে A×B সেটে pq সংখ্যক বস্তু থাকবে ।
  • সেটের সংযোগ বিধি (Associative Law) : A,B,C যেকোন তিনটি সেট হলে,
  1. (A⋃B)⋃C = A⋃(B⋃C)
  2. (A⋂B)⋂C = A⋂(B⋂C)
  • সেটের বণ্টন বিধি (Distributive Law) : A,B,C যেকোন তিনটি সেট হলে,
  1. A⋃(B⋂C) = (A⋃B)⋂(A⋃C)
  2. A⋂(B⋃C) = (A⋂B)⋃(A⋂C)
  • অভেদক বিধি (Identity Law) : A যেকোন সেট এবং U সার্বিক সেট হলে,
  1. A⋃ϕ = A
  2. A⋂U = A
  3. A⋃U = U
  4. A⋂ϕ = ϕ
  • পূরক বিধি (Complement Law) : U সার্বিক সেট, A যেকোন একটি সেট এবং ϕ ফাঁকা সেট এবং U′, A′ এবং ϕ′ যথাক্রমে তাদের পূরক সেট হলে,
  1. A⋃A′ = U
  2. A⋂A′ = ϕ
  3. (A′)′ = A
  4. U′ = ϕ
  5. ϕ′ = U
  • দ্য মরগানের বিধি (De Morgan’s Law) : A,B যেকোন দুইটি সেট এবং A′ ও B′ তাদের পূরক সেট হলে,
  1. (A⋃B)′ = A′⋂B′
  2. (A⋂B)′ = A′⋃B′
  • A সান্ত (finite) সেট হলে, A এর উপাদান সংখ্যা আমরা n(A) দিয়ে প্রকাশ করি ।
  • A এবং B দুইটি সান্ত সেট ফলে A⋃B ও একটি সাই সেট । সেক্ষেত্রে,
n(A⋃B) = n(A)+n(B)-N(A⋂B)
n((A⋃B)′) = n(S)-n(A⋃B)        [A এবং B উভয়ে S এর উপসেট হলে]
                        = n(S)-n(A)-n(B)+n(A⋂B)
  • A,B,C সাই সেট ফলে,
n(A⋃B⋃C) = n(A)+n(B)+n(C)-n(A⋂B)-n(B⋂C)-n(C⋂A)+n(A⋂B⋂C)
  • ভেনচিত্র : কোন সেটের একাধিক উপসেটের মধ্যে সম্পর্ক নির্দেশ করতে অনেক সময় জ্যামিতিক চিত্র ব্যবহার করা হয় । বৃটিশ তর্কশাস্ত্রবিদ জন ভেন প্রথমে এরূপ চিত্র ব্যবহার করেন বলে তার নামানুসারে এগুলোকে ভেনচিত্র (Venn Diagram) বলা হয় । ভেনচিত্রে সার্বিক সেটকে সাধারণত আয়তক্ষেত্র এবং সংশ্লিষ্ট সেটগুলোকে বৃত্ত দ্বারা প্রকাশ করা হয় । নিম্নে কয়েকটি ভেনচিত্র দেখানো হল :
গাঢ় অংশটুকু A⋃B
গাঢ় অংশটুকু A⋂B
গাঢ় অংশটুকু (A⋃B)′
গাঢ় অংশটুকু A\B
গাঢ় অংশটুকু A′

0 comments:

Post a Comment